A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems∗

نویسندگان

  • Mark Kärcher
  • Martin A. Grepl
چکیده

We consider the efficient and reliable solution of linear-quadratic optimal control problems governed by parametrized parabolic partial differential equations. To this end, we employ the reduced basis method as a low-dimensional surrogate model to solve the optimal control problem and develop a posteriori error estimation procedures that provide rigorous bounds for the error in the optimal control and the associated cost functional. We show that our approach can be applied to problems involving control constraints and that, even in the presence of control constraints, the reduced order optimal control problem and the proposed bounds can be efficiently evaluated in an offline-online computational procedure. We also propose two greedy sampling procedures to construct the reduced basis space. Numerical results are presented to confirm the validity of our approach. 1991 Mathematics Subject Classification. 49K20, 49M29, 35K15, 65M15, 93C20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A-posteriori error estimation of discrete POD models for PDE-constrained optimal control

In this work a-posteriori error estimates for linear-quadratic optimal control problems governed by parabolic equations are considered. Different error estimation techniques for finite element discretizations and model-order reduction are combined to validate suboptimal control solutions from low-order models which are constructed by Galerkin discretization and application of proper orthogonal ...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Reduced basis approximation and a posteriori error estimation for parametrized parabolic PDEs; Application to real-time Bayesian parameter estimation

In this chapter we consider reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingredients are Galerkin projection onto a low-dimensional space associated with a smooth “parametric manifold” — dimension reduction; efficient and effective Greedy and POD-...

متن کامل

Optimality conditions and POD a-posteriori error estimates for a semilinear parabolic optimal control

In the present paper the authors consider an optimal control problem for a parametrized nonlinear parabolic differential equation, which is motivated by lithium-ion battery models. A standard finite element (FE) discretization leads to a large-scale nonlinear optimization problem so that its numerical solution is very costly. Therefore, a reduced-order modelling based on proper orthogonal decom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013